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Abstract

The eddy viscosity is the tensor in the equation that governs the transport of the large-scale (modulational) per-

turbations of small-scale stationary flows. As an approximation to eddy viscosity the effective tensor, that arises in the

limit as the ratio between the scales e ! 0, can be considered. We are interested here in the accuracy of this approx-

imation. We present results of computational investigation of eddy viscosity, when the small-scale flows are cellular,

special periodic stationary flows with the stream function / ¼ sin y1 sin y2 þ d cos y1 cos y2, y ¼ x=e, 06 d6 1. For small e
we used a numerical upscaling method. We designed this method so that it captures the modulational perturbations for

any e with Oðe2Þ accuracy and independent of e complexity.

� 2003 Elsevier Inc. All rights reserved.
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1. Formulation

For incompressible highly oscillatory small-scale flow v subject to forcing periodic in space and time the

eddy viscosity, which controls the large-scale transport of momentum, can be determined in a systematic

way by multiscale analysis (see e.g. [3,12–14]). More specifically, assume that v is modeled as a stationary

solution of the Navier–Stokes equations with some auxiliary forcing

v � rv ¼ mDv�rp þ f ; r � v ¼ 0:

The role of the forcing is to sustain the flow pattern of v, and its detailed structure is not of interest. If v is
modulated initially by a large-scale flow, then, due to nonlinear coupling in the Navier–Stokes equations,

the modulational perturbation u has the large-scale part huiðt; xÞ and a small-scale part us ¼ usðhui; vÞ. The
coupling between us and v gives rise to eddy viscosity.
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Consider a special case. On a periodic square domain X ¼ ½0; 2p� � ½0; 2p� with periodic boundary

conditions the underlying family of 2pe-periodic stationary flows veðx=eÞ are cellular:

ve
x
e

� �
¼ 1

e
vðyÞ; y ¼ x=e; vðyÞ ¼

�
� o

oy2
/;

o

oy1
/

�
;

/ðyÞ ¼ sin y1 sin y2 þ d cos y1 cos y2; 06 d6 1:

ð1Þ

The scaling of ve is chosen so that the Reynolds number associated with ve is a constant, independent of e:

Re ¼ max jvej2pe
m

¼ Cmax jveðx=eÞje ¼ Cmax jvðx=eÞj:

Cellular flows is a special class of stationary solutions of the Euler equations in two dimensions, because

they satisfy

Dve
x
e

� �
¼ � j

e2
ve

x
e

� �
ð2Þ

with j ¼ 2, which is a two-dimensional analog of the Beltrami property (for the usual Beltrami property see

e.g. [1]). The parameter d characterizes the size of channels of ve. If d ¼ 0, then there is no channels – the
motion of fluid parcels is contained in small boxes of size � e� e. Such flows are known as two-dimensional

Taylor–Green flows. If d > 0 then there are channels (see Fig. 1), that allow some fluid parcels to travel

along the flow whereas other fluid parcels are contained in islands of size � e� e. Such flows are known as

cat�s-eye flows. If d ¼ 1, then the islands disappear and we have a pure periodic shear flow. If ve is mod-

ulated initially by u0ðxÞ, then the equation for the modulational perturbation ue can be conveniently written

for its vorticity xe as (for details see [9,10])

otx
e þ 1

e
v

x
e

� �
� rSeðxeÞ þ ue � rxe ¼ 1

Re
Dxe; r � v ¼ 0; r � ue ¼ 0; xe ¼ r� ue;

xeð0; xÞ ¼ x0ðxÞ ¼ r � u0ðxÞ;
Fig. 1. Level sets of the stream function of cellular flows with small channels, d ¼ 0:1.
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where

SeðxeÞ ¼ D

�
þ 2

e2

�
D�1xe:

The operator Se is well defined on mean-zero periodic functions, provided e ¼ 1=k, k 2 Z andZ
X
xeðx; tÞdx ¼ 0:

Using multiscale asymptotics (see e.g. [2]) the effective modulation equation in the limit e ! 0 is computed

in [10]. It also was shown in [10] that

• eddy viscosity arises from

1

e
v

x
e

� �
� rSeðxeÞ

only,

• the nonlinear term

ue � rxe

converges, as e ! 0, to a nonlinear operator that does not affect the stability of the solutions of the
effective equation.

Therefore for the study of eddy viscosity effects it is sufficient to analyze the linearized case, where the

vorticity of the modulational perturbation satisfies

otx
e þ 1

e
v

x
e

� �
� rSeðxeÞ ¼ 1

Re
Dxe;

r � v ¼ 0;

xeð0; xÞ ¼ x0ðxÞ:

ð3Þ

In this work, we study Eq. (3) only. In the linearized case, the effective modulation equation is

otx ¼ 1

Re
DxþMx;

xð0; xÞ ¼ x0ðxÞ;
ð4Þ

where

Mx ¼ �Re
8
ððr1 þ dr2Þ2 þ ðdr1 þr2Þ2Þxþ Re

2
ð1

�
þ d2Þ þ m0

�
ðr2

2 �r2
1Þ

2D�1x;

ri ¼
o

oxi
; i ¼ 1; 2:

ð5Þ

The constant m0 in the equation for M satisfies m0 P 0, m0 ¼ m0ðRe; dÞ, and can be computed numerically using
the solution of a periodic boundary value (cell) problem (see [10]).

The eddy viscosity of cellular flows determines the behavior of solutions of (3). An approximate behavior

of these solutions can be predicted by the solutions of the effective modulation Eq. (4). The main issue we

address in this work is the accuracy of this prediction. More specifically, the predictions of the effective

theory can be analyzed by the plane waves

x ¼ aðtÞ expðim � xÞ; að0Þ ¼ 1; m ¼ ðm ;m Þ;
1 2
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which are the exact solutions of the effective Eq. (4). The dispersion relations of these plane wave solutions

can be found using (4) with (5), and they give that the amplitude of these solutions

aðtÞ ¼ exp rt;

where r ¼ rðm; d;ReÞ crucially depends on the chosen Reynolds number Re, wave-vector m, and size of

channels d. In this paper for different values of e, Re, m and d we compute with Oðe2Þ accuracy the nu-

merical error between the plane wave solutions of the effective Eq. (4) and the corresponding solutions of

(3) with the initial conditions

xeð0; xÞ ¼ xð0; xÞ ¼ expðim � xÞ; m ¼ ðm1;m2Þ:
The large scales in our problem are determined by the initial conditions. Rigorously this can be defined by

means of a projection operator

h�i : xeðt; xÞ ! hxeiðt; xÞ
on the space of finite trigonometric polynomialsZ

X
expðim � xÞhxeiðt; xÞdx ¼

R
X expðim � xÞxeðt; xÞdx if jmj6K;
0 otherwise;

�

where a fixed constant K is chosen so that the initial conditions are large scale

hxeð0; xÞi � xeð0; xÞ:
The small scales are defined by the projection operator Ps on the orthogonal complement of the space of

finite trigonometric polynomials

PsðxeÞ ¼ xe � hxei:

These definitions are more convenient for our problem; however, they are equivalent to standard ones (see

e.g. [2]).

Our main numerical technique is upscaling. Generally, the idea of upscaling (see e.g. [15]) is to refor-

mulate the original problem so that large time-steps can be taken in order to capture accurately the be-
havior of the mean flow with an OðeÞ error. For our purposes such accuracy in e is insufficient. Therefore by

upscaling we mean a numerical method with complexity independent of e, that captures accurately the

behavior of the mean flow hxei with an Oðe2Þ error. The main issue here is to account for possible accu-

mulation of OðeÞ error while time-stepping.

The paper is organized as follows. We first describe the design of our upscaling method, then give details

of its implementation for cellular flows, then mention the numerical algorithms used in obtaining the

numerical results, which we present in the end.
2. Upscaling

Our Eq. (3) is very similar to the convection–diffusion of a passive scalar

otx
eðx; tÞ þ 1

e
v

x
e

� �
� rxeðx; tÞ ¼ 1

Pe
Dxeðx; tÞ; r � v ¼ 0; ð6Þ

where the P�eclet number

Pe ¼ max jvj
r

;

r is the diffusivity of the passive scalar xe.
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The convection–diffusion equation of a passive scalar for large P�eclet number has been studied for

cellular flows in [5] (for random flows see e.g. [4] and references therein). It was shown in [5], that if the

passive scalar xe is decomposed into a smooth mean part and a highly oscillatory mean-zero part

xe ¼ hxei þ xe
s; hxe

si ¼ 0; ð7Þ

then

othxei þ 1

e
v

x
e

� �
� rxe

s

D E
¼ 1

Pe
Dhxei; r � v ¼ 0; ð8Þ
xe
s ¼ ex1 þ e2x2 þ e3x3 þ � � � ;
otx
e
s ¼ OðeÞ and therefore Ps

1

Pe
D

�
� 1

e
v

x
e

� �
� r
��1

otx
e
s ¼ Oðe3Þ:

This implies two scaling observations. The first is that

1

e
hv � rxe

si

can be computed with an Oðe2Þ error, if xe
s is resolved with an Oðe3Þ error. The second is that xe

s can be

resolved with an Oðe3Þ error if we neglect otxe
s, because, subtracting (8) from (6) and resolving for xe

s we

have

xe
s ¼ Ps

1

Pe
D

�
� 1

e
v

x
e

� �
� r
��1

Ps

1

e
v

x
e

� �
� rhxei

� �
þ Ps

1

Pe
D

�
� 1

e
v

x
e

� �
� r
��1

otx
e
s

¼ Ps

1

Pe
D

�
� 1

e
v

x
e

� �
� r
��1

Ps

1

e
v

x
e

� �
� rhxei

� �
þOðe3Þ:

This key observation means that a sufficiently well-resolved xe
s can be found by accurate upscaling methods

for elliptic problems (see e.g. [7]).

Hence, an upscaling method for convection–diffusion equation can be designed as follows. Solve the

elliptic problem

Ps

1

Pe
D

�
� 1

e
v

x
e

� �
� r
�
xe

s ¼ Ps

1

e
v

x
e

� �
� rhxei

� �
ð9Þ

using, for example, methods of [7]. Then perform a time-step only for the mean flow hxei using (8), then

update xe
s using (9), then perform the next time-step. Note, that if hxei and xe

s solve (8) and (9), xe solves
(6), then, instead of (7), we have

xe ¼ hxei þ xe
s þOðe2Þ;

as e ! 0. The CFL condition of (8) is independent of e, therefore this numerical method is upscaling.

In the convection–diffusion case the Oðe2Þ accuracy of the upscaling is achieved without resolving otxe
s.

In the case of eddy viscosity (3), analysis shows (see [9]) that, after the decomposition of xe as in (7), xe
s has

the expansion

xe
s ¼

1

e
x1 þ x2 þ ex3 þ e2x4 þ � � � ; ð10Þ
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and

otx
e
s ¼ Oðe�1Þ; ot ot �x

e
h i

¼ Oðe�1Þ:

In contrast to the convection–diffusion case, the two scaling observations here are different. The first is that

1

e
hv � rSexe

si

can be computed with an Oðe2Þ error, if xe
s is resolved with an Oðe2Þ error, hence in the expansion (10) three

terms x1;x2;x3 need to be determined. In order to see that multiply v � rSexe
s by a large-scale test-function

vðxÞ, hvi ¼ vðxÞ, integrate by parts

hv; v � rSexe
si � �hxe

s; S
ev � rvi;

and observe that if v ¼ Oð1Þ, then Sev � rv ¼ OðeÞ. The second observation is that otxe
s needs to be resolved

with an Oð1Þ error. Hence otxe
s cannot be ignored in upscaling.

Consider another decomposition

xe ¼ hxei þ xe
s; xe

s ¼ �xe þ ~xe;

where �xe solves the heat equation with forcing

ot �x
e ¼ 1

Re
D �xe � 1

e
v

x
e

� �
� rSehxei: ð11Þ

Then the analysis of [9] gives that

�xe ¼ 1

e
�x1 þ �x2 þ e �x3 þ � � � ; ~xe ¼ ~x1 þ e ~x2 þ � � � ;

and therefore for upscaling we need to resolve the first three terms of �xe, but only two terms

of ~xe.

Similar to the convection–diffusion case, a sufficiently accurate approximation to ~xe can be found as the

solution to the time-independent elliptic (cell) problem

Ps

1

Re
D

�
� 1

e
v

x
e

� �
� rSe

�
~xe ¼ Ps

1

e
v

x
e

� �
� rSeð �xeÞ

� �
; ð12Þ

provided �xe is already determined with Oðe2Þ accuracy.
In order to determine �xe sufficiently accurately, observe that, differentiating (11) with respect to t, we

have that ot �xe satisfies

ot½ot �xe� ¼ 1

Re
D½ot �xe� � 1

e
v

x
e

� �
� rSeothxei:

Since

ot½ot �xe� ¼ Oðe�1Þ;

we have

ot �x
e ¼ ReD�1 1

e
v

x
e

� �
� rSeothxei

�
þ ot½ot �xe�

�
¼ Re

e
D�1 v

x
e

� �
� rSeothxei

h i
þOðeÞ;
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and a sufficiently accurate approximation to ot �xe satisfies

ot �x
e ¼ Re

e
D�1 v

x
e

� �
� rSeothxei

h i
:

Therefore using (11)

�xe ¼ Re
e
D�1 v

x
e

� �
� rSehxei

�
þ ReD�1 v

x
e

� �
� rSeothxei

h i�
ð13Þ

with an Oðe2Þ error. Hence �xe can be resolved sufficiently accurately, provided we compute the Oð1Þ terms
of hxei and othxei.

After these preparations the numerical method consists of three alternating parts: evaluate �xe and ~xe

using (13) and (12), respectively, and perform a time-step only for the mean flow hxei using

othxei þ 1

e
v

x
e

� �
� rSeð ~xe

D
þ �xeÞ

E
¼ 1

Re
Dhxei; ð14Þ

then update othxei using hxei only, then update �xe and ~xe using (13) and (12), then perform the next time-

step.
Using an upscaling method for elliptic problems, Eqs. (12) and (13) can be solved accurately with

complexity independent of e, hence our method is upscaling provided the CFL condition of (14) is inde-

pendent of e. We claim, that the CFL condition is, indeed, independent of e; however, it is not immediately

obvious. The reason for such favorable CFL condition is the absence of linear anisotropic kinetic alpha

(AKA) instabilities (see e.g. [6]) of the underlying flow v. Our flow vðyÞ, y ¼ x=e does not have AKA in-

stabilities (see [10]), because it satisfies (2). We discuss the CFL condition in more detail in the next section.

2.1. Implementation for cellular flows

For numerical implementation of our upscaling algorithm for more general flows ve, one needs to design

effective algorithms to solve elliptic problems (12) and (13). Here we make observations, which are specific

to cellular flows. These observations imply that, in our case, a spectral numerical method is a convenient

and effective way to solve (12) and (13). The property that the underlying oscillatory flow ve is a simple

trigonometric polynomial, leads to the following simplifying observations.

If the initial conditions are a single trigonometric function

xeðx; 0Þ ¼ expðix � mÞ; m ¼ ðm1;m2Þ 2 Z2; ð15Þ

then the solution of (3) for any time has the form

xeðx; tÞ ¼
X
n

aenðm; tÞ expðiðmþ n=eÞ � xÞ; n ¼ ðn1; n2Þ 2 Z2: ð16Þ

In particular, this means that for any time the mean flow is a plane wave

hxeiðx; tÞ ¼ aeooðm; tÞ expðm � xÞ;

and it is determined by a single scalar function aeooðm; tÞ.
The solution to the heat Eq. (11) is a linear combination of four Fourier coefficients

�xeðt; xÞ ¼
X

n¼ð�1;�1Þ
�aenðm; tÞ expðiðmþ n=eÞ � xÞ;
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where each �aenðm; tÞ, n ¼ ð�1;�1Þ satisfies

dt�ae�1�1ðtÞ ¼ � 1

Re
1

e2
De

���a
e
�1�1ðtÞ þ

1

e3
C��aeðtÞ; �ae�1�1ð0Þ ¼ 0; ð17Þ

where De
�� ¼ 2þ e2jmj2 þ 2eð�m1 � m2Þ, and the constants C�� are explicitly given by

Cþþ ¼ � ðm1 � m2Þð1� dÞS
4

; C�þ ¼ ðm1 þ m2Þð1þ dÞS
4

;

Cþ� ¼ � ðm1 þ m2Þð1þ dÞS
4

; C�� ¼ ðm1 � m2Þð1� dÞS
4

;

where S ¼ 2=ðm2
1 þ m2

2Þ � �2. Therefore the approximation (13) is simply four algebraic equations

ae��ðtÞ ¼
1

e
ReC��

De
��

aeooðtÞ
�

� e2
Re
De

��
dtaeooðtÞ

�
:

If we know explicitly aenðm; tÞ, n ¼ ð�1;�1Þ for all t 2 ½0; T �, then the mean flow Fourier coefficient aeooðm; tÞ
can be found by solving an ordinary differential equation with forcing determined by aenðm; tÞ, n ¼ ð�1;�1Þ:

dtaeoo ¼ �m2

Re
aeoo þ C1s1ðtÞ þ C2s2ðtÞ þ eC3d1ðtÞ þ eC4d2ðtÞ; ð18Þ

where

C1 ¼ ðm2
2 � m2

1Þ
1� d
2

; C2 ¼ ðm2
2 � m2

1Þ
1þ d
2

; C3 ¼ �ðm1 � m2Þðm2
1 þ m2

2Þ
1� d
4

;

C4 ¼ �ðm1 þ m2Þðm2
1 þ m2

2Þ
1þ d
4

;

the functions s1ðtÞ, s2ðtÞ are basically sums and d1ðtÞ, d2ðtÞ are basically differences of aenðm; tÞ, n ¼ ð�1;�1Þ:

s1ðtÞ ¼
ae11

ð1þ em1Þ2 þ ð1þ em2Þ2
þ ae�1�1

ð1� em1Þ2 þ ð1� em2Þ2
;

s2ðtÞ ¼
ae1�1

ð1þ em1Þ2 þ ð1� em2Þ2
þ ae�11

ð1� em1Þ2 þ ð1þ em2Þ2
;

d1ðtÞ ¼
ae11

ð1þ em1Þ2 þ ð1þ em2Þ2
� ae�1�1

ð1� em1Þ2 þ ð1� em2Þ2
;

d2ðtÞ ¼
ae1�1

ð1þ em1Þ2 þ ð1� em2Þ2
� ae�11

ð1� em1Þ2 þ ð1þ em2Þ2
:

ð19Þ

We intensionally wrote the forcing in terms of s1, s2, d1 and d2 in order to show how the absence of AKA

instabilities is manifested in our case. By (10) aenðm; tÞ ¼ Oð1=eÞ, n ¼ ð�1;�1Þ, hence by (18) the CFL

condition for (14) is Oð1Þ, provided there are symmetries

js1ðtÞj6 eCjd1ðtÞj; js2ðtÞj6 eCjd2ðtÞj: ð20Þ

These symmetries are a consequence of (2), and, for the case of cellular flows, they can be seen in the

definition of coefficients C��.

In the Fourier space the Eq. (12) is

Ae ~ae ¼ f e;
0
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where the (infinite-dimensional) matrix Ae
0 with constant coefficients comes from the operator

1

Re
D� 1

e
v

x
e

� �
� rSe;

~ae is the (infinite-dimensional) vector of Fourier coefficients of ~xe

~xeðx; tÞ ¼
X
n

~aenðm; tÞ expðiðmþ n=eÞ � xÞ; n ¼ ðn1; n2Þ 2 Z2:

and the right-hand side f e is the vector of Fourier coefficients of

Ps

1

e
v

x
e

� �
� rSeð �xeÞ

� �
:

The matrix Ae
0 has a simple form. It has diagonal coefficients, that come from the Laplacian and only four

other nonzero coefficients in each row/column. The vector f e also has only finitely many nonzero entries. In

our numerical implementation we approximate ~ae by its first N Fourier coefficients ~aen, pjnj
2
6N , N ¼ 2Re2,

approximate Ae
0 by the corresponding N � N matrix A ¼ Ae and find ~ae as the solution of

A~ae ¼ f e: ð21Þ

It is possible to find ~ae with any required accuracy by an exponentially converging iteration. In order to

observe that decompose Ae
0 into four blocks

A B
C E

� �
~aelow
~aehigh

 !
¼ f e

0

� �
; ð22Þ

where A is the N � N matrix from (21), B ¼ Be, C ¼ Ce, E ¼ Ee are infinite-dimensional, but B;C have only

finitely many nonzero coefficients. Then further decompose

E ¼ Dþ H ;

where D is the diagonal matrix, that corresponds to the Laplacian, and H has only four nonzero off-di-

agonal coefficients in each row/column. For our choice of N ¼ 2Re2, the diagonal matrix D dominates H ,

and therefore (see [11]) an accurate approximation to ~aehigh can be found by an exponentially converging

iteration

~aehigh;kþ1 ¼ �D�1ððH þ CA�1BÞ~aehigh;k þ CA�1f eÞ:

Therefore, ~aelow can be found with any required accuracy as well

~aelow ¼ A�1ðf e � B~aehighÞ:

In our numerical experiments it was observed, however, that for Re6 100, ~aehigh is negligible – it gives
Oð10�14Þ correction to the solution of (21).
3. Numerical implementation

In the numerical implementation of upscaling MATLAB is used primarily with the exception of the

solution of the linear system (21), where C was used. Time-stepping in (18) for hxei is performed by

Backward Euler method with variable time-step Dt ¼ :001=maxð1; ln jaeoojÞ. The four Fourier coefficients of
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�xe are determined in terms of sums and differences (19) in order to keep track of symmetries (20). The

elliptic problem (12) for ~xe is solved by LU decomposition of (21).

If we say that the result was computed by matrix exponentiation, it means that we approximate the
solution of (3) by

dtae ¼ Leae; aeð0Þ ¼ 1; ð23Þ

where ae are the first N Fourier coefficients of xe, N ¼ 2Re2 and Le is a corresponding N � N matrix of the

operator

1

Re
D� 1

e
v

x
e

� �
� rSe:

Then instead of upscaling we use the MATLAB function expm for (23).
4. Results

The linearity and scaling arguments (see e.g. [9]) imply that it is sufficient to solve (3) with initial con-

ditions (15), assuming that the wave-vector is normalized to have length 1: m ¼ ðcos h; sin hÞ. Our primary

interest is the single mean flow Fourier coefficient aeoo and its dependence on e, m, Re, d. Therefore we

present the numerical results for this coefficient only.
The first example was done by matrix exponentiation, because e ¼ 0:25. In Fig. 2 we plot the value of

aeooðm; tÞ, and the amplitude aðm; tÞ of the plane wave solution of the effective Eq. (4) for t ¼ 1, Re ¼ 4 as a

function of the channel size d ¼ 0; :1; :2; . . . ; 1 for five different choices of the wave-vector m:
Fig. 2. Re ¼ 4, t ¼ 1, e ¼ 0:25. The large-scale Fourier coefficients aeooðtÞ (dotted lines) and aðtÞ (solid lines) as a function of d for five

different choices of the wave-vector m given in Eq. (24). Dashed line is the value of the large-scale Fourier coefficient with no convection

term, enhanced/depleted viscosity is below/above this line.
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ð1Þ ðm1;m2Þ ¼ ð1; 1Þ=
ffiffiffi
2

p
;

ð2Þ ðm1;m2Þ ¼ ð�1; 1Þ=
ffiffiffi
2

p
;

ð3Þ ðm1;m2Þ ¼ ð0; 1Þ;
ð4Þ ðm1;m2Þ ¼ ð:5;

ffiffiffiffiffiffiffi
:75

p
Þ;

ð5Þ ðm1;m2Þ ¼ ð�:5;
ffiffiffiffiffiffiffi
:75

p
Þ:

ð24Þ

The numbering in Fig. 2 corresponds to that of the initial conditions (24). For such small Re and relatively

large e the numerical results agree qualitatively and quantitatively with the effective theory. The results of

these numerical experiments confirm the anisotropic tensorial structure of eddy viscosity. Since the dashed

line corresponds to the value of the large-scale Fourier coefficient with no convection term, therefore if a

curve, or a part of a curve is below the dashed line, then the viscosity is enhanced by the presence of

convection; if a curve, or a part of a curve is above the dashed line, then the viscosity is depleted by the
presence of convection. Curve 3 corresponds to the case when the plane wave solution of the effective

equation is only a function of x2. The effective theory predicts that this is the case of maximally enhanced

viscosity for any d. Curve 1 corresponds to the case when the wave-vector of the plane wave is parallel to

the channels. The effective theory predicts that this is the case of maximally depleted viscosity. Curve 2

corresponds to the case when the wave-vector is perpendicular to the channels. The effective theory predicts

that this is the case of the maximally depleted viscosity in the absence of channels (d ¼ 0); for the shear flows

(d ¼ 1) it predicts that the eddy viscous corrections should not be observable. The initial conditions for

curves 4 and 5 are intermediate. We observe depleted viscosity for small channels and enhanced viscosity
for large channels for m ¼ �:5; n ¼

ffiffiffiffiffiffiffi
:75

p
(curve 5). The effective theory predicts that for Re > 2

ffiffiffi
2

p
=ð1þ dÞ

negative eddy viscosity effects should be observed. In our setting it means that aeoo and a can be larger than

1, for some values of d and m. We observe it for curves 1, 2, 4.

The second example is done by upscaling for e ¼ :1; :01; :001 and by matrix exponentiation for

e ¼ :1. Matrix exponentiation method does not converge for e ¼ :01; :001. It shows that for Re ¼ 10 the

effective theory could accurately predict the behavior of modulational perturbations if e is sufficiently

small. In particular, e ¼ :1 is not small enough for this Re. In this experiment we compute the value of

aeooðm; tÞ and aðm; tÞ for Re ¼ 10 as a function of the channel size d for nine different choices of the
wave-vector m:

m ¼ ð0; 1Þ; m ¼ ð1; 1Þ=
ffiffiffi
2

p
; m ¼ ð�1; 1Þ=

ffiffiffi
2

p
;

m ¼ ð:3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :32

p
Þ; m ¼ ð�:3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :32

p
Þ;

m ¼ ð:4;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :42

p
Þ; m ¼ ð�:4;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :42

p
Þ;

m ¼ ð:5;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :52

p
Þ; m ¼ ð�:5;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :52

p
Þ:

ð25Þ

A sample of convergence to the effective equations for e ¼ :1 by matrix exponentiation and for e ¼ :01; :001
by upscaling is shown in Fig. 3 for m ¼ ð0; 1Þ, Re ¼ 10, t ¼ 1 on the log-scale as a function of
d ¼ 0; :1; :2; . . . ; 1. Upscaling for e ¼ :1 (not shown in Fig. 3) gives that aeoo is much smaller than the pre-

diction of the effective theory and matrix exponentiation: for d ¼ 0; :1; . . . ; 1 we have

ln jaeooj � �23;�22;�21;�20;�19;�18;�16;�15;�15;�16;�20;

respectively. The solid line in Fig. 3 is the prediction of the effective theory, the circles correspond to e ¼ :1
(matrix exponentiation) and they are significantly far from the solid line. The � and þ symbols correspond

to e ¼ :01; :001 (upscaling), respectively, and they are very close to the solid line. The maximal error

ee ¼ max
m

jaeooðm; 1Þ � aðm; 1Þj; e ¼ :1; :01; :001;



Fig. 3. Re ¼ 10, m ¼ ð0; 1Þ, t ¼ 1. Log-scale. The large-scale Fourier coefficients aeooðtÞ for e ¼ :1 (s-line), e ¼ :01 (�-line), e ¼ :001

(þ-line), and the aðtÞ (solid line) as a function of d.
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for all wave-vectors m determined by (25) is plotted in Fig. 4 on the log-scale as a function of

d ¼ 0; :1; :2; . . . ; 1. Observe, that

log ee¼:01 � log ee¼:001 � 4:6 ¼ 2 � 2:3 � �2 logð:1Þ;

hence the error is Oðe2Þ. The kinks in the error at d ¼ :3 in Fig. 4 come from the error of the solution

with the wave-vector m ¼ ð�1; 1Þ=
ffiffiffi
2

p
. The plane wave solution of the effective equation with this wave-

vector changes stability at d � :3: it is unstable (grows exponentially) for d < :3 and it is stable for

d > :3. Hence, we believe that the explanation for the presence of kinks in Fig. 4 is that the effective

equation gives poorer predictions about the solutions of (3) when the plane wave solutions of (4)

change stability.

The effective theory predicts that for large Reynolds number there are negative eddy viscosity insta-

bilities for closed cellular flows d ¼ 0 if the wave-vector m ¼ ð�1;�1Þ=
ffiffiffi
2

p
. The third experiment was done

for the wave-vector m ¼ ð1; 1Þ=
ffiffiffi
2

p
, e ¼ :01; :001 and Re ¼ 1; 2; . . . ; 100. In Fig. 5 we plot the solution of the

effective equation and the relative errors

re ¼ jaeooðð1; 1Þ=
ffiffiffi
2

p
; 1Þ � aðð1; 1Þ=

ffiffiffi
2

p
; 1Þj

aðð1; 1Þ=
ffiffiffi
2

p
; 1Þ

; e ¼ :01; :001;

as a function of the Reynolds number on the log-scale. We use here the relative error for convenience
of graphical representation of the results. The relative error deteriorates as Re ! 100. This can be

explained by observation that we neglect Oðe2Þ error. This error becomes significant as Re ! 1.

Therefore when eRe ¼ Oð1Þ for an accurate solution of (3) asymptotic analysis with two parameters e
and Re is required.



Fig. 5. t ¼ 1. Log-scale. The effective coefficient a (solid line), m ¼ ð1; 1Þ=
ffiffiffi
2

p
and the relative error re (dotted lines) as a function of Re.

Fig. 4. Re ¼ 10, t ¼ 1. The logarithm of the maximal error log ee for e ¼ :1 (solid line), e ¼ :01 (dashed line), e ¼ :001 (dotted line) as a

function of d.
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5. Conclusions

The behavior of modulational perturbations (eddy viscosity) of cellular flows was studied numerically
for Re 2 ½1; 100�, e ¼ :1; :01; :001. The effective equations for modulational perturbations predict accurately

the solution when the ratio between scales e is sufficiently small or the Reynolds number Re is not large.

More specifically, a priori error estimates from [9] guarantee that the error is expected to be small for our

numerical experiments if eRe6C, where C 	 1, numerically we observe that the effective equations give an

accurate approximation for the behavior of modulational perturbations for the choice of parameters:

eRe6 :1. The designed numerical upscaling algorithm successfully addresses a general issue in time-de-

pendent upscaling: accumulation of error due to time-stepping. This upscaling method can be applied to

more general highly oscillatory underlying flows. Its spectral numerical implementation, presented here, can
be easily extended to any periodic flow, that satisfies the two dimensional analog of the Beltrami property

(2), however this is still very restrictive for applications (see e.g. a review [8] and references therein). The

implementation of this method for more physically realistic flows remains to be done.
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